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A Simple Analysis of Single- and
Double-V-Groove Guides

Si-Fan Li, Zhong-Xiang Shen, and Xiao-Ming Lou

Absiract —Single- and double-V-groove guides are analyzed by an
approach based on a combination of the transverse resonance method
and the numerical integration technique. Comparisons between the
predicted results and available measured results for a single-V-groove
guide show good agreement. The new approach is simple and accurate.
Numerical results for the conpling characteristics of a double-V-groove
guide are also presented.

1. InTRODUCTION

Groove guide is potentially attractive as a low-loss waveguide
in millimeter-wave and submillimeter-wave bands. Recently, this
type of guide has attracted increasing attention because of its
low loss, easy fabrication, large structural dimensions, and higher
power handling capacity. V-groove guide has been proposed by
Ho and Harris [1] as an alternative to rectangular-groove guide.
Choi et al. [2] analyzed the single-groove guide by the conformal
mapping technique. They pointed out that V-groove guide has
propagation characteristics very similar to those of rectangular-
groove guide, except that attenuation for the dominant mode is
lower and rejection of higher order modes is more effective. So
far the double-V-groove guide has not been investigated.

In this paper we propose a simple method for the analysis of
single- and double-V-groove guides. The method is based on a
combination of the transverse resonance approach [3] and the
numerical integration technique [8]. The transverse equivalent
networks for single- and double-V-groove guides are presented.
The dispersion equations for the propagation characteristics of
these waveguides are formulated by application of the trans-
verse resonance condition. They are solved using numerical
techniques. The approach used here is effectively simpler than
the conformal mapping technique. Good agreement between
our results for a single-V-groove guide and the experimental
resulis in [2] confirms the validity of the proposed method. The
analysis of a double-V-groove guide provides a theoretical basis
for the design of V-groove guide directional couplers.

II. THEORETICAL ANALYSIS
A. Single-V-Groove Guide

The cross section of the single-V-groove guide analyzed here
is shown in Fig. 1. Fig. 2 shows a cross-sectional view of the
electric field lines of the dominant mode present in the V-groove
guide in Fig. 1. In order to analyze the V-groove guide, the
transverse resonance approach [3] is employed. The parallel-
plate waveguide region of the cross section is represented by
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Fig. 1. Cross section of a single-V-groove guide.

Fig. 2. Electric field lines in the cross section for the dominant V-
groove guide.

uniform transmission lines. The V-groove is represented by a
tapered line. The transverse equivalent network of a V-groove
guide can be simplified by taking into account the symmetry of
the waveguide structure. From Figs. 1 and 2, it is evident that at
the plane x =0 an electric wall can be introduced. The intro-
duction of the electric wall at x =0 leads to the simplified
transverse equivalent network of the single-V-groove guide
shown in Fig. 3. According to the method for the analysis of
tapered lines used in [5], the following equation can be ob-
tained:

dZ(x)  K(x)
T Zy(x)

Z3(x)+ iZo(x)K(x) O

where Z;, (x) is the input impedance at x (see Fig. 3), and Zy(x)
is the characteristic impedance of the tapered line at x, an
expression for which was given in [3]. K(x) is the propagation
constant of the transmission line at x.

wpueK(x)

Z(x)= K2

K=kt~
b(x)=2[c+d(1—-x/a)].

Here w is the radian frequency, u, is the permeability of free
space, and K, is the cutoff wavenumber of the dominant mode.
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Fig. 3. Transverse equivalent circuit for the half cross section of a
single-V-groove guide.

At x =0 where the electric wall was introduced, the input
impedance is equal to zero.

Zin(2)]; =0 =0. @)

Equation (1) can be solved using the fourth-order Runge—Kutta
numerical technique [8]. The input impedance Z, (x)|,—, can
be calculated when K is assumed to be known.

By using the transverse resonance condition, the following
equation can be obtained:

Zin(x)lx=a =—Zy (3)
where
wpkK,
02~ K2
[+
T 2
Ky=-j (E) ‘Kcz
Let
2
Z(x)=—-Z
()= 5, = Zu(5)

and substitute this equation into the above equations to yield

dZ:iix) =ZX(x)+ K2 - [_b_(z—)r

Z,(0)=0

z =y (=) -x2. *)

The cutoff wavenumber, K, of the dominant mode in a single-
V-groove guide can be calculated by solving eigenvalue prob-
lem (4).

B. Double-V-Groove Guide

The cross section of a double-V-groove guide is illustrated in
Fig. 4. It is assumed that the structure is symmetrical with
respect to the Y axis. The analysis can be simplified by applying
odd- and even-mode excitation theory. When the odd mode is
excited, the symmetrical plane forms an electric wall; when the
even mode is excited, it is equivalent to a magnetic wall. The
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Fig. 4. Cross section a double-V-groove guide.
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Fig. 5. Simplified transverse equivalent circuit for a double-V-groove
guide.
TABLE 1
GuiDE WAVELENGTHS AT Ag = 3.117 MM
_Guide Theoretical  neasured  Error Between Our
Dimensions Results A, (mm Results Results
2¢ a=d This Ref  from[2] and Those Measured
(mm) (mm) Theory [2] A, (mm) in [2] (%)
2 3.1544 3.155 3.156 0.05
10 4 3.1483 3.148 3.146 0.07
6 3.1409 3.147 3.136 0.16
2 3.1432 3144 3.146 0.09
12 4 3.1403 3.139 3.138 0.07
6 3.1360 3.138 3.130 0.19

transverse equivalent circuit of a double-V-groove guide is shown
in Fig. 5. Utilizing an approach similar to that introduced for
the single-V-groove guide, the following two problems can be
obtained:

dZ,,(x)
dx

Z,(s+2a)=P

Z,,(s)=~P-tanh (s P)

" il
=Z;o(x)+ Kczo _[
x
odd mode

Pel®)  zieye k- [%r

Z, (s+2a)=P
Z,,(s)=—P/tanh(s-P)

even mode

where

T 2
(2_C) - Kczo(e)

_fe+d(x—s)/a
b(x)A{C+d(2a+s—x)/a

P=

(s<x<s+a)
(s+a<x<s+2a).
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TABLE 11
GUIDE WAVELENGTHS AT X BAND

Predicted Values

Measured Error Between Our Values

Frequencies 2 (em) Values (2] yryjyes o] and Those Measured
f (GHz) Ours  Ref.[2] A, (cm) in [2] (%)
8.02 3.8505 3.855 4.000 3.75
8.53 3.6078 3.611 3.704 2.60
9.15 3.3519 3.355 3.448 212
9.695 3.1567 3.157 3.226 2.15
10.25 2.9785 2.980 3.030 1.70
10.81 2.8192 2.820 2.857 1.33
11.375 2.6750 2.676 2.703 1.04
11.97 2.5385 2.539 2.564 1.00
12.26 2.4998 2.501 2.500 0.01
Guide dimensions: 2a=3 ¢cm, d =4.5 cm, 2¢ = 7.5 cm.
\ P(r'ad/m‘) - } Ctrad/m)
202} 1 N
2ec=10mm
ot a=2.Smm
5 cdd mode d=Smm
2019 | i
even mode 2c=10mm
I / a=Smm
d=2. Smm
2007} [
. N . S{mm)
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Fig. 6. Propagation constants of odd and even modes in a double-V-
groove guide versus groove separation s (2¢=10 mm, ¢=15 mm, d =
2.5 mm, Ay =3.08 mm). ’

As in the case of single-V-groove guide, (5) and (6) can be
solved by the Runge-Kutta technique [8]), and the cutoff
wavenumbers for odd and even modes in a double-V-groove
guide can be calculated.

III. NumericaL RESULTS

In order to verify the method proposed here, the theory was
first applied to a single-V-groove guide. The calculated results
for the guide wavelengths of the dominant mode at 100 GHz
and X band are shown in Tables I and II along with the
calculated and measured values given in [2]. The agreement is
excellent; thus the accuracy of the present method has been
verified by other theoretical and experimental results. The rea-
son why the error between the predicted and measured guide
wavelengths is significantly higher at X band than at 100 GHz is
that the accuracy of measurement at X band is low [2]. It is
probable that similar accuracy can be obtained for a double-V-
groove guide. From (5) and (6), the cutoff wavelengths and the
propagation constants of odd and even modes in a double-V-
groove guide can be obtained. Fig. 6 shows the variation of the
propagation constants of the odd and even modes with respect
to groove separation.

The coupling coefficient between two grooves is defined as
follows:

B o ﬁ e

C =10logy ———

;
.75, (7

o 2 4 § 8 o

Fig. 7. Coupling coefficient C versus groove separation s (A=
3.08 mm, 2¢ = 10 mm).
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Fig. 8. Coupling coefficient versus frequency (2¢ = 10 mm).

where B, and B, are the propagation constants of the odd and
even modes respectively. The variation of the coupling coeffi-
cient with groove separation is shown in Fig. 7, from which s
can be determined if C and other parameters are given. The
frequency characteristics of the coupling coefficient C are shown
in Fig. 8. It can be seen that the variation of the coupling
coefficient with respect to frequency is small. Therefore, the
double-V-groove guide is a potential structure for broad-band
directional couplers in the millimeter-wave band.
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IV. ConNcLusioNs

The transverse resonance approach associated with the
Runge—Kutta numerical integration technique has been em-
ployed to calculate the propagation characteristics of the domi-
nant mode in single-V-groove guide. Numerical results for the
guide wavelength of the dominant mode in a single-V-groove
guide have been obtained and shown to agree well with avail-
able results in the literature. The analysis of a double-V-groove
guide has also been performed. Although the method described
in this paper is applied to the analysis of the V-shaped groove
guide, the analysis can be extended to quite general shapes such
as semicircular grooves, trapezoidal grooves, and closed V-groove
guides.
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Correct Determination of TE and TM Cutoff
Wavenumbers in Transmission Lines
with Circular Outer Conductors
and Eccentric Circular
Inner Conductors

Liyang Zhang, Jingjun Zhang, and Wenbing Wang

Abstract —The cutoff wavenumbers of TE and TM modes (higher
order modes) in transmission lines with circular outer conductors and
eccentric circular inner conductors are carefully evaluated. The correct-
ness of Kuttler’s bounds is confirmed and the reason why some of the
values obtained lie outside the bounds and some of the modes could not
be found in Vishen’s paper is given. A reliable technigue for accurately
determining the roots of an analytical function is proposed for finding
cutoff wavenumbers in such a way as to avoid missing any modes.
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I. InTRODUCTION

Calculation of the cutoff wavenumbers of TE and TM modes
in transmission lines having a circular outer conductor and an
eccentric circular inner conductor has been of great interest to
many authors. By means of conformal mapping combined with
intermediate methods for the lower bounds and the Rayleigh—
Ritz method for the upper bounds, these cutoff wavenumbers
were evaluated by Kuttler [1] for several different relative di-
mensions of the structure. A special analytical shape perturba-
tion method [2] was developed by Roumeliotis et al. for treating
small eccentricities. Vishen et al. [3] employed a method which
may be conveniently used for evaluating the cutoff wavenumbers
in the structure for large or small eccentricities and different
radius ratios, and the examples in [1] were repeated. However,
some of the results computed by Vishen obviously contradict
Kuttler’s bounds. As we can see from [4], some confusion still
exists.

In this paper, the technique used in [3] is employed. Deficien-
cies of the formulation in [3] are pointed out, and by careful
derivation, a new expression is obtained. Cutoff wavenumbers of
the structure for all the cases considered in [3] are carefully
evaluated. All of our results lie in the bounds reported by
Kuttler and are quite close to the upper bounds. The reason
why some of the modes could not be found and some of the
values fall outside Kuttler’s bounds in [3] is given.

Like the analytical technique used here, many other methods,
among them the method of moments, also reduce cutoff
wavenumbers to the zeros of an analytical function. Hence,
correctly determining the zeros of an analytical function is a
problem of general interest. Some iterative algorithms, e.g.
Muller iteration, are frequently employed [5] for tackling the
problem. To the best of the authors’ knowledge, it is difficult to
avoid missing roots by simply using such iterative algorithms,
because one rarely knows how many zeros exist inside the given
frequency band. In this paper, a new technique is developed on
the basis of a combination of the contour integral method [6]
with Muller iteration. The method exhibits accuracy and effi-
ciency, as well as reliability.

II. ResuLts AND Discussion

We use the method employed in [3], i.e., separation of vari-
ables and the use of addition theorems for Bessel functions to
satisfy the boundary condition at the outer circular conductor.
This method, as pointed out by certain authors [4], is not new
and can be found in many papers. However, with the matrix
elements expressed in ratio forms of Bessel functions, the for-
mulas presented in [3] have deficiencies which may sometimes
result in mistakes. By a careful derivation (see the Appendix) we
obtain, for TE modes,

det [ 2,,,(k)] =0 1)

where the elements of the determinant are given by

P (k) = [T(kb)Y, (ka) =Y, (kb) ], (ka)]

[dy o m(kd) + (=1, (k)] (2)
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