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Short Papers —

A Simple Analysis of Single- and

Double-V-Groove Guides

Si-Fan Li, Zhong-Xiang Shen, and Xiao-Ming Lou

AMract —Single- and double-V-groove guides are analyzed by an
approach based on a combination of the transverse resonance method
and the numerical integration technique. Comparisons between the
predicted results and available measured results for a single-V-groove
guide show good agreement. The new approach is simple and ac$urate.
Numerical results for the coupling characteristics of a double-V-groove
guide are also presented.

I. INTRODUCTION

Groove guide is potentially attractive as a low-loss waveguide

in millimeter-wave and submillimeter-wave bands. Recently, this

type of guide has attracted increasing attention because of its

low loss, easy fabrication, large structural dimensions, and higher

poweI handling capacity. V-groove guide has been proposed by

Ho and Harris [1] as an alternative to rectangular-groove guide.

Choi et al. [2] analyzed the single-groove guide by the conformal

mapping technique. They pointed out that V-groove guide has

propagation characteristics very similar to those of rectangular-

groove guide, except that attenuation for the dominant mode is

lower and rejection of higher order modes is more effective. So

far the double-V-groove guide has not been investigated.

In this paper we propose a simple method for the analysis of

single- and double-V-groove guides. The method is based on a

combination of the transverse resonance approach [3] and the

numerical integration technique [8]. The transverse equivalent

networks for single- and double-V-groove guides are presented.

The dispersion equations for the propagation characteristics of

these waveguitles are formulated by application of the trans-

verse resonance condition. They are solved using numerical

techniques. The approach used here is effectively simpler than

the conformal mapping technique. Good agreement between

our results for a single-V-groove guide and the experimental

results in [2] confirms the validity of the proposed method. The

analysis of a double-V-groove guide pr~vides a theoretical basis

for the design of V-groove guide directional couplers.

II. THEORETICAL ANALYSIS

A. Single-V-Groove Guide

The cross section of the single-V-groove guide analyzed here

is shown in Fig. 1. Fig. 2 shows a cross-sectional view of the

electric field lines of the dominant mode present in the V-groove

guide in Fig. 1. In order to analyze the V-groove guide, the

transverse resonance approach [31 is employed. The parallel-
plate waveguide region of the cross section is represented by
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Fig. 1. Cross section of a single-V-groove guide.

Fig. 2. Electric field lines in the cross section for the dominant V-
groove guide.

uniform transmission lines. The V-groove is represented by a

tapered line. The transverse equivalent network of a V-groove

guide can be simplified by taking into account the symmetry of

the waveguide structure. From Figs. 1 and 2, it is evident that at

the plane x = O an electric wall can be introduced. The intro-

duction of the electric wall at x = O leads to the simplified

trarisverse equivalent network of the single-V-groove guide

shown in Fig. 3. According to the method for the analysis of

tapered lines used in [5], the following equation can be ob-

tained:

dZ,~( X) . ~(x)

dx
—z:(x)+jzo(x)K(x)

= –Jzo(x)
(1)

where Zi~(x) is the input impedance at x (see Fig. 3), and ZO(X)

is the characteristic impedance of the tapered line at x, an

expression for which was given in [3]. K(x) is the propagation

constant of the transmission line at x.

[

m-
Kz(x). @ – —

b(x)

2

b(x) =2[c+d(l– x/a)].

Here o is the radian frequency, ~0 is the permeability of free

space, and Ke is the cutoff wavenumber of the dominant mode.
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Fig. 4. Cross section a doubIe-V-groove guide,

Fig. 3. Transverse equivalent circuit for the
single-V-groove guide.

half cross section of a

At x = O where the electric wall was introduced, the input

impedance is equal to zero. .-. — .
0:

—. —. —
S+2cz x

Z*2 s,
4[%3

,
Zi~(X)lx=~=O. (2)

Equation (1) can be solved using the fourth-order Runge–Kutta

numerical technique [8]. The input impedance Z,n(X)l ~ =. can

be calculated when KC is assumed to be known.

By using the transverse resonance condition, the following

equation can be obtained:

Fig. 5. Simplified transverse equivalent circuit for a double-V-groove
guide.

‘i.(x) l.=. =–zoz (3)
TABLE I

GUIDE WAVELENGTHS ATAn=3.117 MM

where Guide Theoretical Measured Error Between Qur
Dimensions Results Ag (mm) Results

Results

from [2] and Those Measured

(r%) ?m=mf T~%y %; A, (mm) in [2] (70)

LOP0K2
Z02= —

K:
2 3.1544 3.155 3.156 0.05

10 4 3.1483 3.148 3.146 0.07
6 3.1409 3.147 3.136 0.16

2 3.1432 3.144 3.146 0.09

12 4 3.1403 3.139 3.138 0.07

6 3.1360 3.138 3.130 0.19Let

K:
z,(x) = —Z,n(x)

jti~o
transverse equivalent circuit of a double-V-groove guide is shown

in Fig. 5. Utilizing an approach similar to that introduced for

the single-V-groove guide, the following two problems can be
and substitute this equation into the above equations to yield obtained:

1
dZ,O(x)

[

‘lr
=Z:O(X)+K:O– —

dx b(x)
odd mode

zto(s+2a) = P

dZ,(x)
— . Z:(x) +K:–

&

2
T

b(x)
(5)

(6)

z,(o) = o
~-%(~) = -Ptanh(sP)

(4)

dZ,.( X )
—= Z;(x) +K:, –

dx

9?

b(x)
The cutoff wavenumber, K,,, of the dominant mode in a single- even mode

where

V-groove guide can be calculated by solving eigenvalue prob-

lem (4).

B. Double-V- Grooue Guide

The cross section of a double-V-groove guide is illustrated in

Fig. 4. It is assumed that the structure is symmetrical with

respect to the Y axis. The analysis can be simplified by applying

odd- and even-mode excitation theory. When the odd mode is

excited, the symmetrical plane forms an electric wall; when the

even mode is excited, it is equivalent to a magnetic wall. The

Z,c(s+2a)=P

Z,,(s) = – P/tanh(s. P)

b(x) =

(

c+d(x–s)/a (s<x<s+a)

C+d(2a+s–x)/u (s+a<x<s+2a).
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TABLE 11
GUIDE WAVELENGTHSAT X BAND

Predicted Values Measured Error Between Our Values
Frequencies

~g (cm) Values [4 values [2]
and Those Measured

f (GHz) Ours Ref. [2] A, (cm) in [2] (70)

8.02
8..53
9.15
9.695

10.25
10.81
11.375
11.97

12.26

3.8505
3.6078

3.3519
3.1567
2.9785
2.8192
2.6750

2.5385
2.4998

3.855 4.000
3.611 3.704
3.355 3.448
3.157 3.226
2.980 3.030
2.820 2.857
2.676 2.703
2.539 2.564
2.501 2.500

3.75
2.60
2.12
2.15
1.70
1.33
1.04
1.00’

0.01

Guide dimensions: 2a= 3 cm, d = 4.5 cm, 2C = 7.5 cm.

o~ . ;,-,,,

Fig. 6. Propagation constants of odd and even modes in a double-V-

groove guide versus groove separation s (2c = 10 mm, a = 5 mm, d =
2.5 mm, A.= 3.08 mm).

As in the case of single-V-groove guide, (5) and (6) can be

solved by the Runge-Kutta technique [8], and the cutoff

wavenumbers for odd and even modes in a double-V-groove

guide can be calculated.

III. NUMERICAL RESULTS

In order to verify the method proposed here, the theory was

first applied to a single-V-groove guide. The calculated results

for the guide wavelengths of the dominant mode at 100 GHz

and X band are shown in Tables I and II along with the

calculated and measured values given in [2]. The agreement is

excellent; thus the accuracy of the present method has been

verified by other theoretical and experimental results. The rea-

son why the error between the predicted and measured guide

wavelengths is significantly higher at X band than at 100 GHz is

that the accuracy of measurement at X band is low [2]. It is

probable that similar accuracy can be obtained for a double-V-

groove guide. From (5) and (6), the cutoff wavelengths and the

propagation constants of odd and even modes in a double-V-

groove guide can be obtained. Fig. 6 shows the variation of the

propagation constants of the odd and even modes with respect

to groove separation.

The coupling coefficient between two grooves is defined as

follows:

(7)

4C{rad/m)

‘&2c=itjrnrn

a=Eimm
d=~. ~=fm

1
0 .2 4 6 $ /0> Shn)

Fig. 7. Coupling coefficient C versus groove separation s (A O,=
3.08 mm, 2C = 10 mm).

Fig. 8. Coupling coefficient versus frequency (2c = 10 mm).

where fiO and ~, are the propagation constants of the odd and

even modes respectively. The variation of the coupling coeffi-

cient with groove separation is shown in Fig. 7, from which s

can be determined if C and other parameters are given. Tlhe
frequency characteristics of the coupling coefficient C are shown

in Fig. 8. It can be seen that the variation of the coupling

coefficient with respect to frequency is small. Therefore, the

double-V-groove guide is a potential structure for broad-band

directional couplers in the millimeter-wave band.
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IV. CONCLUS1ONS

The transverse resonance approach associated with the

Runge–Kutta numerical integration technique has been em-

ployed to calculate the propagation characteristics of the domi-

nant mode in single-V-groove guide. Numerical results for the

guide wavelength of the dominant mode in a single-V-groove

guide have been obtained and shown to agree well with avail-

able results in the literature. The analysis of a double-V-groove

guide has also been performed, Although the method described

in this paper is applied to the analysis of the V-shaped groove

guide, the analysis can be extended to quite general shapes such

as semicircular grooves, trapezoidal grooves, and closed V-groove

guides.
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Correct Determination of TE and TM Cutoff

Wavenumbers in Transmission Lines

with Circular Outer Conductors

and Eccentric Circular

Inner Conductors

Liyang Zhang, Jingjun Zhang, and Wenbing Wang

Abstract —The cutoff wavenumbers of TE and TM modes (higher
order modes) in transmission lines with circular outer conductors and
eccentric circular inner conductors are carefully eyaluated. The correct-
ness of Kuttler’s bounds is confirmed and the reason why some of the

values obtained lie outside the bounds and some of the modes could not
be found in Vishen’s paper is given. A reliable technique for accurately
determining the roots of an analytical function is proposed for finding
cutoff wavenumbers in such a way as to avoid missing any modes.
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I. INTRODUCTION

Calculation of the cutoff wavenumbers of TE and TM modes

in transmission lines having a circular outer conductor and an

eccentric circular inner conductor has been of great interest to

many authors, By means of conformal mapping combined with

intermediate methods for the lower bounds and the Rayleigh-

Ritz method for the upper bounds, these cutoff wavenumbers

were evaluated by Kuttler [1] for several different relative di-

mensions of the structure. A special analytical shape perturba-

tion method [2] was developed by Roumeliotis et al. for treating

small eccentricities. Vishen et al. [3] employed a method which

may be conveniently used for evaluating the cutoff wavenumbers

in the structure for large or small eccentricities and different

radius ratios, and the examples in [1] were repeated. However,

some of the results computed by Vishen obviously contradict

Kuttler’s bounds. As we can see from [4], some confusion still

exists.

In this paper, the technique used in [3] is employed. Deficien-

cies of the formulation in [3] are pointed out, and by careful

derivation, a new expression is obtained. Cutoff wavenumbers of

the structure for all the cases considered in [3] are carefully

evaluated. Afl of our results lie in the bounds reported by

Kuttler and are quite close to the upper bounds. The reason

why some of the modes could not be found and some of the

values fall outside Kuttler’s bounds in [3] is given.

Like the analytical technique used here, many other methods,

among them the method of moments, also reduce cutoff

wavenumbers to the zeros of an analytical function. Hence,

correctly determining the zeros of an analytical function is a

problem of general interest. Some iterative algorithms, e.g.

Muller iteration, are frequently employed [5] for tackling the

problem. To the best of the authors’ knowledge, it is difficult to

avoid missing roots by simply using such iterative algorithms,

because one rarely knows how many zeros exist inside the given

frequency band. In this paper, a new technique is developed on

the basis of a combination of the contour integral method [6]

with Muller iteration. The method exhibits accuracy and effi-

ciency, as well as reliability.

H. RESULTS AND DISCUSSION

We use the method employed in [3], i.e., separation of vari-

ables and the use of addition theorems for Bessel functions to

satisfy the boundary condition at the outer circular conductor.

This method, as pointed out by certain authors [4], is not new

and can be found in many papers. However, with the matrix

elements expressed in ratio forms of Bessel functions, the for-

mulas presented in [3] have deficiencies which may sometimes

result in mistakes. By a careful derivation (see the Appendix) we

obtain, for TE modes,

det[F’~~(k)]=O (1)

where the elements of the determinant are given by

Prim(k) = [.T~(kb)YA(ka)– Y(~~)JL(~a)l

~[Jn_m(kd)+(-l)’Jn+m( kd)] (2)

0018 -9480 /91/0800-1416$ 01.00 01991 IEEE


